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The reconstruction of arable land patterns over historical periods is one of critical research issues in the
study of land use and land cover change (LUCC). Taking into account the continuous distribution of arable
land and spatial constraints, this paper proposes a constrained cellular automata model to reconstruct
historical arable land patterns. The paper describes model establishment, parameter calibration, and
results validation in detail. The model was applied to Jiangsu Province, China, and was compared with a

conventional spatial allocation method. The results showed that the methodology developed in this
study can more objectively reflect the evolution of the pattern of arable land over historical periods, in
terms of similarity with contemporary pattern, than the spatial allocation methods and can provide an
effective basis for the historical study of arable land.

© 2014 Elsevier Ltd. All rights reserved.

Introduction

Land use and land cover change (LUCC) forms one of the core
elements of global environmental change (IGBP, 2001). Large-scale
and long-term LUCC have profound effects on atmospheric
composition, climate change, nutrient cycling, ecosystems, and
more (Foley, Ruth, & Gregory, 2005). The effect of human activities
on the earth has increased, especially in the past 300 years, and the
resulting changes in the global environment have been profound.
The impact of changes in land cover over historical periods should
be included during the building of models that accurately simulate
global environmental change (Turner et al., 1995). The International
Geosphere—Biosphere Program (IGBP) and the International Hu-
man Dimensions Program on Global Environmental Change (IHDP)
co-sponsored LUCC research in the mid-1990s. That research
emphasized that various means could be adopted to reconstruct a
detailed history in the change of land use (Ge, Dai, He, Pan, & Wang,
2008; Lambin et al., 2001; Lambin & Veldkamp, 2005), thus
creating an upsurge in research in the area of land cover changes
over historical periods. Reconstruction of land cover history,
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especially reconstruction of high-precision spatial data of arable
land cover, has been receiving much attention by scholars (Zhu, Cui,
& Miu, 2012).

Reconstruction of arable land use, especially reconstruction of
data on arable land during historical periods is divided into two
types of reconstruction: quantity reconstruction and spatial pattern
reconstruction. Quantity reconstruction is used to obtain quanti-
tative statistics related to arable land dynamics (Zhu et al., 2012).
Quantity reconstruction mainly reflects the overall trends and
regional differences during historical periods; but is also an
important foundation for pattern reconstruction. Spatial pattern
reconstruction refers to restoration of the spatial distribution of the
total amount of arable land. It simulates and creates the spatial
distribution of arable land, based on certain spatial allocation
principles and combined with the land quantity data (Zhu et al.,
2012). Pattern reconstruction provides an important basis for in-
depth analysis of LUCC and the effects of ecology, climate, and
environment. Quantity reconstruction is relatively mature scien-
tifically speaking; it mainly consists of collections of, corrections to,
and amendments to multi-source historical data, and when
amended, trends such as food production, population, and culti-
vation were taken as affecting indicators to set up a correction
system of the amount of arable land. However, the reconstruction
of patterns still requires in-depth study.
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This paper focuses on patterns of reconstruction and provides
quantity reconstruction results. Among existing studies related to
reconstructing arable land patterns, the gridded global land-cover
datasets SAGE and HYDE established by Ramankutty and Foley
(1999) and Goldewijk (2001), Goldewijk, Beusen, and Van (2011)
respectively, are the most cutting edge products. SAGE recon-
structed the global distribution of arable land in a 0.5° x 0.5° spatial
resolution for the past 300 years based on the modern pattern of
global land use. The latest version of HYDE simulated historical
changes of global arable land and pasture at a higher spatial reso-
lution (5’ x 5’) over the past 12,000 years using a more detailed
algorithm. These two studies have served as excellent references
for subsequent studies. Many scholars used or improved these
methods for more in-depth data reconstruction, including world-
wide research conducted by Pongratz, Reick, and Raddatz (2008)
who reconstructed the global distribution of arable land and
pasture of 800—1700 AD using 1700 as the base year. In addition,
Kaplan, Krumhardt, and Zimmermann (2009) conducted a region-
wide study and reconstructed the forest cover in Europe since 1000
BC. Among studies that reconstructed patterns of arable land in
China, Liu and Tian (2010) established a representative study using
the entire cultivation intensity data set for Chinese traditional
agricultural regions in 1820 in China. Other studies are limited to
some local regions. For example, Lin, Zheng, and He (2008)
reconstructed the arable land pattern in traditional agricultural
areas on mainland China for six historical time periods. Ye, Fang,
and Ren (2009) reconstructed the number of arable land types in
each county of Northeast China over the past 300 years. Li, He, and
Zhang (2011) reconstructed datasets of arable land in the years
1671 and 1827 in Yunnan Province. Li, He, and Chen (2012)
reconstructed the pattern of land distribution in the southwest
region of China.

Overall, current reconstruction results on historical arable land
all deeply explore available information on arable land, and in
these studies, the abundance of historical data on China was used
and given full attention (Lin et al, 2008). In most of existing
studies, the patterns reconstruction followed the quantity recon-
struction; first, environmental, socio-economic background, and
historical data were used to reconstruct the overall amount of land
use during historical periods, and then modern patterns of land
use and the impact of factors were used to establish appropriate
algorithms for spatial allocation (Zhu et al., 2012). The basis of
these methods is a top-down spatial allocation based on land
suitability. Three different types of spatial allocation exist. First,
the total dependent-method performs simple allocation, taking
the modern land-use as the entire impact factor. Second, the
partially dependent-method performs allocation by taking the
pattern of modern arable land as a boundary condition, while
considering population, terrain and other spatial factors that are
used for the evaluation of land suitability. Third, the dynamic
dependent-method adds a dynamic weight on the basis of the
partially dependent method. In this case, the weight of the mod-
ern agriculture pattern gradually decreases while going back in
time and the weight of spatial factors gradually increased while
going back in time to reflect the effects of time on spatial factors
affecting the historical pattern (Zhu et al., 2012).

In the literature, many scholars have summarized and screened
out spatial factors that affect land use changes. These factors are
generally classified into three groups, socio-economic drivers (e.g.
increasing population and booming economy), biophysical drivers
(e.g., soil condition and slope) and proximate forces (e.g. distance
to roads and human settlements) (Turner et al., 1995). For
instance, Verburg, De Koning, Kok, Veldkamp, and Bouma (1999)
included biophysical and socio-economic driving forces in their
CLUE modeling framework. Here we focus on literature related to

China since we are reconstructing patterns of Chinese arable land.
Li et al. (2011) argued that the process of development in arable
land was influenced by terrain, heat, water, soil, vegetation and
other natural factors as well as demographic, economic develop-
ment, agricultural policy, war and other social factors. Liu, Liu, and
Xia (1995) took elevation, erosion, content of organic matter, pH,
soil texture, topsoil thickness, soil depth, and drainage condition
as the main factors in an evaluation of arable land suitability.
Overall, factors affecting the suitability of arable land can be
divided into two categories: natural factors and human factors.
The natural factors include terrain slope, elevation, heat, moisture,
intensity of soil erosion, climate, potential productivity, tempera-
ture conditions (accumulated), effective soil thickness, exposed
bedrock (bare rock per total area), soil texture, hydrological and
drainage conditions, soil salinization (ratio of salinization area),
irrigation (distance to water source), vegetation index, soil pH, soil
organic content and topsoil thickness. Human factors include de-
mographic information, economic development, agricultural pol-
icies, wars and famines.

In the process of reconstructing patterns of arable land across
the landscape, in addition to considering the suitability of arable
land (in the form of spatial factors), one also needs to consider the
principle of continuous distribution of arable land, that is, to
consider the places that are surrounded by arable land are more
likely to be arable land. This is consistent with the cellular automata
(CA) modeling concept. CA is a bottom-up research tool based on
complex adaptive systems (CAS), and can be used to simulate
spatiotemporal dynamic processes occurring in a complex system.
The basic concept of CA is that the status of any particular cell at the
next time period is affected by its own status and the status of its
neighboring cells. Constrained CA can simulate more realistic
spatial dynamic processes than other methods by considering other
constraints in addition to a simple CA and its neighborhood. Con-
strained CA models have been extensively applied in modeling
urban expansion thanks to their capability to simulate dynamic
spatial processes from a bottom-up perspective in the real world.
For instance, Li and Yeh (2000) modeled sustainable urban devel-
opment by integrating constrained CA and GIS for the city of
Dongguan, China. Ward, Murray, and Phinn (2003) integrated
spatial optimization and CA for modeling urban expansion in
southeast Queensland, Australia. White, Straatman, and Engelen
(2004) developed a CA based on an integrated dynamic spatial
simulation model for the entire Netherlands. Lagarias (2012)
developed a CA model for simulating urban sprawl in Thessalo-
niki, Greece. Long, Shen, and Mao (2012) used a CA model to
simulate urban expansion in Beijing, China, and identified policies
that were necessary for implementing planned urban patterns.
Moghadam and Helbich (2013) applied a Markov chains-CA inte-
grated model for simulating urbanization process of Mumbai, India.
The spatial factors to be considered in the spatial allocation process
of the reconstruction of patterns of arable land can be included in
constrained CA in the form of (spatial) constraints. Additionally, a
constrained CA model has a strong spatial computing power; it can
effectively simulate complex systems in a bottom-up approach, and
has been shown to have advantages in studies on urban expansion,
land use change, and other fields (Long et al., 2012). Therefore, the
constrained CA method has the ability to consider land contiguous
development principles and multiple spatial factors in the recon-
struction of patterns of historical arable land.

Based on previous research of constrained CA and historical
reconstruction of the patterns of arable land, this study re-
constructs arable land patterns using constrained CA, and applies
the approach in Jiangsu Province, China. Existing constrained CA
studies have focused on forecasting the process of future urban
expansion. In this study, on the contrary, we focus on using



Y. Long et al. / Applied Geography 52 (2014) 67—77 69

constrained CA for backcasting historical arable land. To the best of
our knowledge, no constrained CA-based reconstruction research
has been conducted on the historical land use so this study pro-
vides a new perspective for it. The remaining four parts of this
paper include four parts. Study area and data section describes the
study area and the data used for the study. Methods section fo-
cuses on modeling, parameter identification, and validation of the
method in reconstruction of arable land pattern based on con-
strained CA. Results and discussion section shows simulation re-
sults of applying the model to Jiangsu Province, and results of the
model validation. Conclusions section discusses the potential
contribution of this study and future studies, as well as makes
concluding remarks.

Study area and data
Study area

Thus study encompasses the entire scale of present-day Jiangsu
Province in the center of the eastern coastal areas of China (Fig. 1).
This lies in the downstream region of the Yangtze River, west of
and adjacent to the Yellow Sea, northwest of Zhejiang and
Shanghai, east of Anhui, and south of Shandong. Jiangsu Province
covers a total area of 103,000 km?, and is densely covered by a
network of canals, rivers, streams and other waterways. By 2011,
the area had 47,200 km? of arable land or 45.8% of the entire study
area.

Data

Spatial distribution of arable land in 1980 and 1960

In this paper, 1980 was used as the base year for the recon-
struction of land use patterns and is based on land use data for
Jiangsu Province in 1980. These data were interpreted from remote
sensing images which was downloaded from http://www.geodata.
cn; we extracted the spatial distribution of arable land of Jiangsu
Province in 1980 (Fig. 2(a)). Total arable land in 1980 was
72,338 km?,

In addition to arable land in 1980, we interpreted arable land in
Dec 1960 from CORONA remote sensing images from the USA that
one can download from http://earthexplorer.usgs.gov/. This was
used for calibrating the arable land transition rule during 1980—
1960 for reconstructing the historical pattern of arable land use.

Because of poor data availability, arable land in 1960 was limited to
a part of Jiangsu Province with an area of 10,278 km? (Fig. 2(b)), and
a total arable land of 5664 km?. The area of arable land in the same
region was 8289 km? in 1980 with an expansion from 1960 to 1980
of 3319 km?.

The total amount of arable land in typical years

Total arable land data for certain years was selected to
determine the total arable land at various reconstruction
points in time, as the exogenous variables of constrained CA.
The arable land data from the Qing Dynasty came mainly from
three sources: (a) official records and local history books such

s “Qing Yi Tong Zhi,” and “Rebuilt Jiaging Tong Zhi; ” (b)
widely cited research results, such as “Chinese dynasties ac-
count, farmland, land tax statistics” (Liang, 2008); (c) research
results related to regional history and geography, such as
“Jiangsu and Anhui provinces land use and its driving force
mechanism” (Zhao, 2005). Recovery and reconstruction of
arable land data from the Qing Dynasty includes two aspects:
the correction system of registered rebellion data and the
validation system of revised arable land data. The correction
system of registered rebellion data analyses the impact factor
leading to untrue registers of land by estimating the extent of
the influence of a variety of factors in different periods. We
established a factor correction table and turned registered
rebellion data into actual acres of arable land, and initially
obtained corrected data of arable land. The validation system
of revised arable land data, based on preliminary revised data,
further examines and revises it in terms of the population base
and the reclamation trends (Cao, Jin, & Zhou, 2013). Taking
into account the availability of data and policies related to
arable land, the years selected in the Qing Dynasty were 1661,
1820, and 1887.

Little variation in arable land data is available during the
Republic of China. Researchers have been forced to use limited
sources of data source, e.g. “China’s agricultural profile esti-
mates” (Zhang, 1933) and “China’s land-use statistics” (Pu, 1933).
Nevertheless, researchers mostly used the “quoted convergence”
correction method citing related literature as the main data
based on considering the link to arable land data. The arable land
data during the Republic of China in this paper mainly came from
1933 data available in “China’s statistical analysis of land issues”
(Statistics Bureau of the National Government, 1936).
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Fig. 1. Location of Jiangsu in the modern China (a) and prefectural boundaries during the Qing Dynasty (b) of Jiangsu Province, China.
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Fig. 2. Arable land in 1980 (a) and 1960 (b). Note: black represents arable land.
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Fig. 3. Prefectural population (a) and human settlements (b) distribution of Jiangsu Province in 1820.

Based on the procedures discuss above, the total arable land
in typical years have been reconstructed as follows: 43,175 km?
in 1661, 54,479 km? in 1820, 59,544 km? in 1887 and 56,864 km?
in 1933 according to the study by Cao et al. (2013).

Population and human settlements

Population and human settlement data are used for validating
reconstructed arable land patterns. We selected the population and
spatial distribution of human settlements of Jiangsu Province in
1820 for validation, which was taken from the Harvard University
CHGIS database (CHGIS, 2007). The prefectural boundaries in 1820
do not completely overlap with the present-day Jiangsu Province
boundary. For minor differences, those boundaries along the
Jiangsu borders were expanded or shrunk to the modern borders,
yet the population of each boundary will remain unchanged. For
those prefectures with a large area outside the modern borders,
however, their population in 1820 was adjusted using the area-
weighting method (Fig. 3).

Spatial factors (constraints in CA)
We selected the following spatial factors affecting the
reconstruction of patterns of arable land while taking into

account the natural climate, historical agricultural conditions,
research scales and data availability in the study area. The flat
plains of the Jiangsu Province study area allowed us to not
consider slope as a factor. To facilitate comparison between
factors, all factors needed to be standardized to either O to 1 or
0 and 1 (Fig. 4).

(1) Intensity of soil erosion: minor water erosion was set to 1,
mild and moderate water erosion and erosion caused by
human engineering were set to 0.

(2) Soil pH: pH from 6.5 to 7.5 were set to 1; and any pH values
outside this range were set to 0.

(3) Content of soil organic matter: high soil organic matter
content is favorable for farming. Organic matter content
within the range of 0—13.99 was rescaled to 0—1.

(4) Distance to the nearest human settlement: based on the
distribution of human settlements in 1820, the distance to
the nearest human settlement of all cells within the study
area was calculated and normalized to 0—1.

(5) Distance to the nearest water body: the distance to the
nearest water body in 1820 of all cells within our study area
was calculated and normalized to 0—1.
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Methods
Model assumptions and conceptual model

A Historical Arable-land Reconstruction Model (HARM) was
constructed based on a constrained CA. The basic assumptions of
model are: (1) similarities exist between the historical and the
contemporary arable land patterns; (2) the most unsuitable
farming cells would be turned into non-arable land first (from
contemporary to historical times); (3) cells surrounded by a high
ratio of non-arable land would be turned into non-arable land first;
(4) the range of historical arable land does not exceed the scope of
contemporary arable land, in that it is impossible for land that was
historically arable not be arable land in modern times (this works
for the historical period before 1980 in Jiangsu, when major ur-
banization had not occurred in China)'; (5) land suitability related
factors do not change over time as a result of data availability, a
situation that other studies also faced.

The basic elements of a HARM based on constrained CA are as
follows:

(1) Lattices: the entire Jiangsu Province;

(2) Cells: cell size was 1 km x 1 km, with a total of 103,395 cells
in the study area;

(3) Cell states: V =1 indicates arable lands; V = 0 indicates non-
arable lands;

(4) Transition rules will be specifically addressed in the next
section, using a multi-criteria evaluation (MCE) method;

(5) Neighborhoods: Moore neighborhood, 3 cells x 3 cells, a
total of eight neighboring cells;

(6) Discrete time: one iteration in simulation equals one year in
the real world;

(7) Constraints: the five aforementioned spatial factors: soil
organic matter (SOM) content, intensity of soil erosion
(EROSION), soil pH (PH), minimum distance to the nearest
human settlement (DSETTLEMENT) and minimum distance
to the nearest water body (DRIVER).

Status transition rules

The specific transformation rules for the HARM (Equation (1))
use Land Amount as the total number of arable land cells to-be-
reduced during the year T, to the year T; (T, > T;), and where
stepNum' is the number of cells reduced in iteration t reflecting the
arable land dynamics as the macro constraint, ij is the cell’s co-
ordinate, st is arable land suitability for cell ij, w is the variable
coefficient, p, is the initial transition potential, p} .. is the
maximum value of pg across the entire lattices, « is the dispersion
parameter ranging from 1 to 10 used to adjust arable land con-
version speed, p! is the final transition probability, inStepID is the
sub-loop ID, Vj; is the cell status, pf . is the minimum of final
transition probability in different sub-loops within each iteration,
and its value is continuously updated in the sub-loop. The rules
could guarantee there would be stepNum cells translated from
arable lands to non-arable lands in each CA iteration, according to
the arable land suitability calculated by spatial constraints and the
neighborhood effect.

! In the over 300 years from the earlier period of Qing Dynasty to 1980, the total
area of arable land in China increased by 160% and reached its peak in 1978—1980.
The total area of arable land significantly decreased since 1980. For this, we
regarded 1980 as our starting time point for construction. This has been indicated
in the modified manuscript.

1. LandAmount = 3 stepNum?
t
2. s = Xo + X1 *SOMj; + X, *EROSIONj; + x3*PH;;

+ X4 *DSETTLEMENT;; + x5 *DRIVER;; + x}‘\,*neighbor,?-

1
3. ph=——+
R
Pg
4. pt = exp|a* -1
b p|: <pfgmax )] (1)

5. for inStepID = 1 to stepNum
if pfj = Py then VEH! =0
P =1

Phnin update

next inStepID

The above status transition rules are different from those pro-
posed by Wu (2002): pt = pg*con(sl; = suitable)*ij. In his status
transition rules, py is the observed global potential which does not
change across simulation iterations, con () converts the state of
suitable land into a binary variable, and Q; is a neighborhood
evaluation function. The weight of neighborhood effect in Wu
(2002) cannot be calibrated using historical observed datasets.
According to Long, Mao, and Dang (2009), the simulation results are
sensitive to the weighting parameter xy of the neighborhood effect.
In our paper, the weight of the neighborhood effect was calibrated
(see Model calibration section).

Model calibration

The parameters needed to be calibrated in the HARM included
stepNumt, x; (k = 0—5), and xy, in which various approaches can be
adopted. stepNum’ is assumed to be constant through the entire
simulation period, and can be calculated as follow:

Cr, — Cy

o Ty (2)

stepNum =

where Cr, and Cr, are the total cell number of arable land in the year
T, and Ty, respectively.

The weights x; for spatial constraints can be retrieved by a lo-
gistic regression. For the dependent variable, among all none arable
land cells in Ty, the expanded cells from the year T; to T,(reduced
from the year T, to Ty as well) are set as 1, and other cells are set as
0. Independent variables correspond to the spatial factors, while
considering that the dependent variable is 0 or 1, which is not
normally distributed. Therefore, we used logistic regression to
identify the coefficients (weights) of five spatial factors.

Keeping the identified x, static, x; can be calibrated using the
MonoLoop method (for details see Long et al., 2009), with xj
continually sampled from O to X; max With an interval as xp max/M.
Xn.max, and can be set based on the user’s experience; M is set at 200
in this paper. The sampled x; and the already calibrated weights x;,
are used as the input variables for the constrained CA model. The
simulated arable land patterns will be compared on a cell-by-cell
basis with the observed arable land patterns to obtain the Kappa
index. In the present paper, the Kappa index is calculated to analyze
the degree of similarity (goodness-of-fit) between the observed
and reconstructed arable land patterns for each cell. The x;, with the
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maximum Kappa index will be specified as the final weight for the
neighborhood effect.

Finally, stepNumt, x5, with the best matching degree and xo—xs
obtained by logistic regression would be put together into status
transition rules of the HARM to reconstruct patterns of historical
arable land use.

Reconstruction of patterns of historical arable land use

The simulation procedures using the HARM were used to
reconstruct the historical arable land patterns based on the estab-
lished status transition rules (Fig. 5). First, we set the exogenous
variables like total area of farmland in various historical points in
time, spatial constraints and their corresponding coefficients for

the model. Then, based on the macro socio-economic conditions,
stepNum parameters were calculated for different periods of time,
and also calculated the initial, global, and final probability of cell
transition in the CA environment. Next, cells to be converted were
iteratively selected in the allocation process in each iteration. In the
last step, based on the target time of the simulation, we determined
the number of iterations, completed the entire simulation process
after several allocations, and obtained the reconstructed the pat-
terns of arable land over a historical period.

In some cases, the total area of arable land for each sub-region
within the entire study area is obtainable. In this condition, the
HARM can be extended to the partition HARM. For example, each sub-
region works as a separate sub-model. When the sub-model runs into
the sub-region’s total arable land, it stops running. To ensure that the
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model runs to the end, the total arable land in each sub-region is
consistent. The idea of partition simulation has also been reflected in
the traditional spatial allocation method; this idea is expected to
further enhance the pattern reconstruction precision by the HARM.

Model validation

Model validation is a key procedure that is used to test the
applicability of the HARM. For constrained CA models used for
simulating urban expansion, the urban layout interpreted by
remote sensing images generally could be used for model valida-
tion. The condition for validating the HARM, however, is different in
that the spatial distribution of arable land in historical time phases
is generally not obtainable because of the long period of time in
which remote sensing did not even exist. Direct data on the layout
of arable land was rare in the history of China, but settlement
distribution and population of each state capital can typically be
obtained. Several methods can be used to verify the simulation
results using these data, qualitatively and quantitatively:

(1) Qualitative validation: compare more small, high, low and
other descriptive text in the ancient history books with the
reconstruction results in the corresponding region at the
sub-region level, while looking for trends. If the trends were
basically the same, then the reconstruction results were
better;

(2) Semi-qualitative validation: if a population dataset is rich in
a sub-study area, then directly compare the number of
different levels of settlements in the corresponding sub-
study area with the reconstructed total arable land. If they
are basically the same, then the reconstruction results were
better;

(3) Quantitative validation (our recommended approach and
used in validating HARM in this paper): if specific information
is available on the number of households, perform correlation
analysis between the number of households or population in
the sub-region with total arable land. The higher the corre-
lation coefficient is, the better the reconstruction. In addition,
the patterns of known and reconstructed arable land could be
compared in terms of average size, compactness, and scaling
characteristics. If the underlying characteristics of model
output follow the known arable land patterns, the model
could be evaluated as being able of reconstructing the dis-
tribution of arable land in historical phases.

Results and discussion
Identification of model parameters

In this paper, the year 1980 was used as the base year for the
HARM calibration. Table 1 shows the parameter calibration results
that are established through the following steps.

(1) The macro parameter for the reconstruction for each typical
year could be calibrated using the arable land in each typical
year and that in the base year (1980) as well as for years
between the base year and the typical year. Its values are
91 km? for simulation of the year 1661, 112 km? for 1820,
138 km? for 1887 and 329 km? for 1933.

(2) The weights of the five spatial constraints excluding x, are
calibrated using logistic regression in SPSS (see Table 1). All
these variables are significant at the P < 0.001 level. Of all the
factors, DSETTLEMENT, DRIVER and SOM are the three main
factors for this model according to the weights regressed. The

Table 1

Calibrated parameters of HARM.
Name Value
stepNum 91, 112, 138 and 329 for each typical year
Xo (CONSTANT) -1.370
X1 (SOM) 2.734
X, (EROSION) 1.366
x3 (PH) —0.088
X4 (DSETTLEMENT) -5.186
x5 (DRIVER) -2.931
x¢ (Neighborhood effect) 11.000

Kappa index between the observed arable land patterns in
1980 and the regressed patterns is 77.3%.

(3) xp is identified as 11 using the MonoLoop method. The Kappa
index between the observed and the simulated patterns
using weights from both logistic regression and MonoLoop
procedures is 81.3%. The significant increase of Kappa
comparing with the one from logistic regression further in-
dicates that the neighborhood effect plays an important role
in arable land patterns. In addition, a Kappa value of greater
than 80% also indicates our HARM can well replicate modern
arable land patterns and provides a possible method of
reconstructing historical arable land patterns.

Reconstructed arable land in typical years

Based on the model calibration results, we simulated arable land
distribution at several historical stages using the HARM (not
partition HARM here). Based on the total amount of arable land
reconstruction (The total amount of arable land in typical years
section), four typical years (1661, 1820, 1887 and 1933) were
selected for the corresponding reconstruction of spatial layout of
arable land (Fig. 6(a)—(d)).

Validation on the reconstructed results

Based on data availability, the reconstruction of arable land for
1820 was used for validation. We use CHGIS as the main data source
for validation since the total population for each prefecture and the
distribution of human settlements in 1820 are available in CHGIS
(Population and human settlements section). We performed cor-
relation analysis for “observed” population and amount of human
settlements in each prefecture. The correlation coefficient is greater
than 0.8, indicating the both datasets are significantly positively
correlated. In this regard, we only used population of each pre-
fecture for the further validation of the model. The validation re-
sults show that the correlation coefficient between the total arable
land of each prefecture by the HARM and population of each pre-
fecture in CHGIS was 0.12, denoting that these two were not
correlated. Possible reasons may be as follows: (1) CHGIS datasets
were created at a national scale, having limited accuracy at local
levels such as Jiangsu Province in China; (2) The proportion of
agricultural population (farmers) among all populations may vary
across prefectures. This problem also applied for arable land quota
per farmer. It would be difficult to translate total population into
total arable land in each prefecture. When we inferred arable land
using population in 1820 for prefectures, several prefectures were
having total arable land significantly (2—3 times) greater than that
in 1980, which was apparently not applicable. Given the above two
reasons, it is difficult to use CHGIS to validate the results of the
HARM reconstruction.

Therefore, the focus of validation in this article was on the
comparison of the reconstruction results in 1820 by the HARM, and
the partition HARM with the results of the conventional spatial
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(c)

allocation model adopted by extensive studies as previously dis-
cussed in the introduction. Based on the calculated arable land
suitability layer using calibrated coefficients for spatial factors in
Identification of model parameters section, the reconstruction re-
sults obtained by the allocation model could be achieved by sorting
suitability of cells and removing cells with lower suitability until
reaching the total amount of arable land in 1820 (Fig. 7(a)). For
using the partition HARM for reconstructing the arable land pat-
terns in 1820 (Fig. 7(b)), the total amount of arable land in each
prefecture could be inferred by assuming that the total amount of
arable land is proportional to the population of each prefecture
(available in CHGIS). Fig. 7(c) shows the results of reconstruction
with the partition HARM.

From the comparison of results reconstructed by the three
methods, clearly the arable land patterns obtained by our models,
either HARM or the partition HARM, are more compact with fewer
patches in contrast to the allocation model (Table 2), because the
constrained CA considered the contiguous characteristics of arable
land, while results from the allocation method are more decentral-
ized. Compared to the HARM, the total amount of arable land in
Huizhou by the partition HARM was small; this mainly occurred
because Huizhou in the partition model is an independent model
with reference to the results of the total allocation. Overall, the
arable land reconstruction results by the partition HARM were much

(d)

Fig. 6. Reconstructed arable lands in 1661 (a), 1820 (b), 1887 (c) and 1933 (d).

closer to the present-day arable land patterns in 1980, in terms of
average compactness of all patches. In addition, the total arable land
area in each prefecture was taken into account in the partition
HARM. Considering these conditions, we recommend using the
partition HARM to reconstruct historical arable land patterns.

In addition, we also used cluster analysis to measure the rela-
tionship between the patch size and frequency of various sizes of
patches. On a logarithmic scale, this relationship should be linear.
Hence, it can be used to validate cellular automata models (Vliet,
White, & Dragicevic, 2009). The rank-size plots on the reconstruc-
tion results by the HARM and the partition HARM exhibit a sig-
nificant rank-size pattern with large R-square values, indicating the
applicability of our proposed two models (Fig. 8).

Conclusions
Concluding remarks

Based on related constrained CA research and existing research
on the reconstruction of historical arable land, this study estab-
lished a historical arable land reconstruction model (HARM) using
constrained CA and applied the HARM to Jiangsu Province, China.
We selected five constraints including soil pH, soil organic matter
content, intensity of soil erosion, and distance to the nearest human
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(c)

Fig. 7. Arable land reconstruction results for 1820 by: a: the allocation model; b: the HARM; c: the partition HARM.

settlements as well as distance to the nearest water body, and their
relationships with the arable land distribution in 1980, as the
transition rule of CA; these were quantitatively estimated using
logistic regression. The reconstructed historical arable land pat-
terns were compared with that created using the allocation
method, with the HARM indicating a better result in terms of patch
compactness. Compared to the conventional spatial allocation
approach for reconstruction of spatial patterns of historical arable
land, this study has the following characteristics:

(1) Borrowing ideas from urban expansion simulation, con-
strained CA have been initially applied for reconstructing
historical arable land to analyze the contiguous development
of arable land.

(2) Observed arable land expansion and several spatial factors
were used to identify the objective transition rule of historical

Table 2

Comparison of arable land reconstruction results by various models.
Reconstruction result Patch Average patch Average

number area in ha compactness

Allocation 993 5477 0.51
HARM 451 12,007 0.57
Partition HARM 391 13,856 0.55
Arable land in 1980 1240 5826 0.54

arable land while incorporating logistic regression, with the
goal of avoiding the subjectivity in some existing studies.

(3) The constructed patterns can be dynamically visualized at

ten year intervals.

(4) Compared to existing research, our patterns of reconstruc-

tion have high resolution (1 km grid) and each cell is asso-
ciated with a unique land use (farmland or not), in contrast to
the using the type of arable land proportion ongoing in each
cell. Reconstruction results in other coarser scales could be
aggregated based on the reconstructed 1-km patterns. Our
high-resolution results, which considered local geography
and historical situations in more detail, could be used to
update data with low-resolution datasets such as globally
available SAGE and HYDE.

Future work

While this explorative research has merit, several aspects
deserve further research in the near future as follows.

(1) We are currently conducting research with the goal of

delineating boundaries of the stable arable land across all of
China. Different evolutionary rules are expected to exist for
different regions that can be used by the HARM to achieve
national scale reconstruction patterns of historical arable
land.
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Fig. 8. Rank-size for the reconstruction results by the HARM (a) and the partition HARM (b). Note the unit of the x axis is m?.

(2) Relevant policies/events regarding an increase or decrease of
arable land at different stages in time could be introduced
into the HARM, such as famine, large-scale reclamation, in
order to obtain a more objective reconstruction pattern of
arable land.

(3) In addition constrained CA could be used in historical
reconstruction of arable land, and can also be used to predict
or perform scenario analysis on the future patterns of arable
land. The author anticipates carrying out such study, to
establish past, present and future continuous arable land
patterns.
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